Algebra Tutorials! Monday 30th of November Home Scientific Notation Notation and Symbols Linear Equations and Inequalities in One Variable Graphing Equations in Three Variables What the Standard Form of a Quadratic can tell you about the graph Simplifying Radical Expressions Containing One Term Adding and Subtracting Fractions Multiplying Radical Expressions Adding and Subtracting Fractions Multiplying and Dividing With Square Roots Graphing Linear Inequalities Absolute Value Function Real Numbers and the Real Line Monomial Factors Raising an Exponential Expression to a Power Rational Exponents Multiplying Two Fractions Whose Numerators Are Both 1 Multiplying Rational Expressions Building Up the Denominator Adding and Subtracting Decimals Solving Quadratic Equations Scientific Notation Like Radical Terms Graphing Parabolas Subtracting Reverses Solving Linear Equations Dividing Rational Expressions Complex Numbers Solving Linear Inequalities Working with Fractions Graphing Linear Equations Simplifying Expressions That Contain Negative Exponents Rationalizing the Denominator Decimals Estimating Sums and Differences of Mixed Numbers Algebraic Fractions Simplifying Rational Expressions Linear Equations Dividing Complex Numbers Simplifying Square Roots That Contain Variables Simplifying Radicals Involving Variables Compound Inequalities Factoring Special Quadratic Polynomials Simplifying Complex Fractions Rules for Exponents Finding Logarithms Multiplying Polynomials Using Coordinates to Find Slope Variables and Expressions Dividing Radicals Using Proportions and Cross Solving Equations with Radicals and Exponents Natural Logs The Addition Method Equations
Try the Free Math Solver or Scroll down to Tutorials!

 Depdendent Variable

 Number of equations to solve: 23456789
 Equ. #1:
 Equ. #2:

 Equ. #3:

 Equ. #4:

 Equ. #5:

 Equ. #6:

 Equ. #7:

 Equ. #8:

 Equ. #9:

 Solve for:

 Dependent Variable

 Number of inequalities to solve: 23456789
 Ineq. #1:
 Ineq. #2:

 Ineq. #3:

 Ineq. #4:

 Ineq. #5:

 Ineq. #6:

 Ineq. #7:

 Ineq. #8:

 Ineq. #9:

 Solve for:

 Please use this form if you would like to have this math solver on your website, free of charge. Name: Email: Your Website: Msg:

# Raising an Exponential Expression to a Power

An expression such as (x3)2 consists of the exponential expression x3 raised to the power 2. We can use known rules to simplify this expression.

 (x3)2 = x3 Â· x3 Exponent 2 indicates two factors of x3. = x6 Product rule: 3 + 3 = 6

Note that the exponent 6 is the product of the exponents 2 and 3. This example illustrates the power of a power rule.

Power of a Power Rule

If m and n are any integers and a 0, then (am)n = amn.

Example

Using the power of a power rule

Use the rules of exponents to simplify each expression. Write the answer with positive exponents only. Assume all variables represent nonzero real numbers. Solution

 a) (23)5 = 215 Power of a power rule
 b) (x2)-6 = x-12 Power of a power rule Definition of a negative exponent
 c) 3(y-3)-2y-5 = 3y6y-5 Power of a power rule = 3y Product rule
 d)  Power of a power rule = x7 Quotient rule