Algebra Tutorials!    
         
  Saturday 21st of December      
 
   
Home
Scientific Notation
Notation and Symbols
Linear Equations and Inequalities in One Variable
Graphing Equations in Three Variables
What the Standard Form of a Quadratic can tell you about the graph
Simplifying Radical Expressions Containing One Term
Adding and Subtracting Fractions
Multiplying Radical Expressions
Adding and Subtracting Fractions
Multiplying and Dividing With Square Roots
Graphing Linear Inequalities
Absolute Value Function
Real Numbers and the Real Line
Monomial Factors
Raising an Exponential Expression to a Power
Rational Exponents
Multiplying Two Fractions Whose Numerators Are Both 1
Multiplying Rational Expressions
Building Up the Denominator
Adding and Subtracting Decimals
Solving Quadratic Equations
Scientific Notation
Like Radical Terms
Graphing Parabolas
Subtracting Reverses
Solving Linear Equations
Dividing Rational Expressions
Complex Numbers
Solving Linear Inequalities
Working with Fractions
Graphing Linear Equations
Simplifying Expressions That Contain Negative Exponents
Rationalizing the Denominator
Decimals
Estimating Sums and Differences of Mixed Numbers
Algebraic Fractions
Simplifying Rational Expressions
Linear Equations
Dividing Complex Numbers
Simplifying Square Roots That Contain Variables
Simplifying Radicals Involving Variables
Compound Inequalities
Factoring Special Quadratic Polynomials
Simplifying Complex Fractions
Rules for Exponents
Finding Logarithms
Multiplying Polynomials
Using Coordinates to Find Slope
Variables and Expressions
Dividing Radicals
Using Proportions and Cross
Solving Equations with Radicals and Exponents
Natural Logs
The Addition Method
Equations
   
Try the Free Math Solver or Scroll down to Tutorials!

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 

Please use this form if you would like
to have this math solver on your website,
free of charge.


Graphing Equations in Three Variables

Example

A dependent system of three equations

Solve the system:

(1)

(2)

(3)

2x

-6x

4x

-

+

-

3y

9y

6y

-

+

-

z

3z 

2z

  = 4

  = -12

  = 8

Solution

We will first eliminate x from Eqs. (1) and (2). Multiply Eq. (1) by 3 and add the resulting equation to Eq. (2):

6x

-6x

-

+

9y

9y

-

+

3z

3z

= 12

= -12

Eq. (1) multiplied by 3

Eq. (2)

        0 = 0  

The last statement is an identity. The identity occurred because Eq. (2) is a multiple of Eq. (1). In fact, Eq. (3) is also a multiple of Eq. (1). These equations are dependent. They are all equations for the same plane. The solution set is the set of all points on that plane,

{(x, y, z) | 2x - 3y - z = 4}.

 

Helpful Hint

If you recognize that multiplying Eq. (1) by -3 will produce Eq. (2), and multiplying Eq. (1) by 2 will produce Eq. (3), then you can conclude that all three equations are equivalent and there is no need to add the equations.

Copyrights © 2005-2024