Algebra Tutorials! Saturday 9th of December Home Scientific Notation Notation and Symbols Linear Equations and Inequalities in One Variable Graphing Equations in Three Variables What the Standard Form of a Quadratic can tell you about the graph Simplifying Radical Expressions Containing One Term Adding and Subtracting Fractions Multiplying Radical Expressions Adding and Subtracting Fractions Multiplying and Dividing With Square Roots Graphing Linear Inequalities Absolute Value Function Real Numbers and the Real Line Monomial Factors Raising an Exponential Expression to a Power Rational Exponents Multiplying Two Fractions Whose Numerators Are Both 1 Multiplying Rational Expressions Building Up the Denominator Adding and Subtracting Decimals Solving Quadratic Equations Scientific Notation Like Radical Terms Graphing Parabolas Subtracting Reverses Solving Linear Equations Dividing Rational Expressions Complex Numbers Solving Linear Inequalities Working with Fractions Graphing Linear Equations Simplifying Expressions That Contain Negative Exponents Rationalizing the Denominator Decimals Estimating Sums and Differences of Mixed Numbers Algebraic Fractions Simplifying Rational Expressions Linear Equations Dividing Complex Numbers Simplifying Square Roots That Contain Variables Simplifying Radicals Involving Variables Compound Inequalities Factoring Special Quadratic Polynomials Simplifying Complex Fractions Rules for Exponents Finding Logarithms Multiplying Polynomials Using Coordinates to Find Slope Variables and Expressions Dividing Radicals Using Proportions and Cross Solving Equations with Radicals and Exponents Natural Logs The Addition Method Equations
Try the Free Math Solver or Scroll down to Tutorials!

 Depdendent Variable

 Number of equations to solve: 23456789
 Equ. #1:
 Equ. #2:

 Equ. #3:

 Equ. #4:

 Equ. #5:

 Equ. #6:

 Equ. #7:

 Equ. #8:

 Equ. #9:

 Solve for:

 Dependent Variable

 Number of inequalities to solve: 23456789
 Ineq. #1:
 Ineq. #2:

 Ineq. #3:

 Ineq. #4:

 Ineq. #5:

 Ineq. #6:

 Ineq. #7:

 Ineq. #8:

 Ineq. #9:

 Solve for:

 Please use this form if you would like to have this math solver on your website, free of charge. Name: Email: Your Website: Msg:

# Multiplying Two Fractions Whose Numerators Are Both 1

Key Idea

To multiply two fractions whose numerators are both 1, multiply the denominators and keep the numerator equal to 1.

Example 1 ## Why Does This Procedure Work?

Recall that one way to model the multiplication of two whole numbers is to draw a rectangle whose length and width are the two numbers. After dividing the rectangle into unit squares, counting the unit squares gives the product of the two whole numbers. For example, consider the product 2 Ã— 3 modeled below. The model shows that 2 Ã— 3 = 6. Modeling the product of two fractions is slightly different. Begin with two segments of the same length. Divide one segment into the number of equal parts indicated by the denominator of the first fraction. Divide the other segment into the number of equal parts indicated by the denominator of the second fraction. Suppose that we want to multiply and . Divide one segment into 3 equal parts and the other into 4 equal parts. Since the numerator of each fraction is 1, darken one of the parts of each segment. This is shown in the figure below. Next, we use the segments as two of the adjacent sides of a square. The marks on the segments are used to divide the square into smaller regions that are all the same size. Finally, we shade the smaller region formed by the two darkened parts of the segments. The shaded region represents the product of the fractions. It is one of the 12 regions of equal size into which the square is divided. Since each side of the square represents a length of 1, the square has an area of 1 square unit. Therefore, the shaded region represents the fraction . The model shows that .